Related Problem with Solution:

Find (a) the total number and (b) the total mass of neutrons in 7 mg of 14 C. (Assume that mass of a neutron = 1.675 × 10⁻²⁷kg).

Ans:

Step I. Calculation of total number of carbon atoms Gram atomic mass of carbon (C-14) = $14 \text{ g} = 14 \times 10^3 \text{ mg}$ $14 \times 10^3 \text{ mg}$ of carbon (C-14) have atoms = 6.022×10^{23}

7 mg of carbon (C-14) have atoms
$$=\frac{6.022 \times 10^{23}}{(14 \times 10^3 \,\text{mg})} \times (7 \,\text{mg}) = 3.011 \times 10^{20} \,\text{atoms}.$$

Step II. Calculation of total number and total mass of neutrons No. of neutrons present in one atom (C-14) of carbon = 14 - 6 = 8 No. of neutrons present in $3-011 \times 10^{20}$ atoms (C-14) of carbon = $3.011 \times 10^{20} \times 8$

= 2.408×10^{21} neutrons Mass of one neutron = 1.675×10^{-27} kg Mass of 2.408×10^{21} neutrons = $(1.675 \times 10^{-27}$ kg) $\times 2.408 \times 10^{21}$ = 4.033×10^{-6} kg.